The writer is very fast, professional and responded to the review request fast also. Thank you.
Competency Determine and interpret the linear correlation coefficient, and use linear regression to find a best fit line for a scatter plot of the data and make predictions. Scenario According to the U.S. Geological Survey (USGS), the probability of a magnitude 6.7 or greater earthquake in the Greater Bay Area is 63%, about 2 out of 3, in the next 30 years. In April 2008, scientists and engineers released a new earthquake forecast for the State of California called the Uniform California Earthquake Rupture Forecast (UCERF).As a junior analyst at the USGS, you are tasked to determine whether there is sufficient evidence to support the claim of a linear correlation between the magnitudes and depths from the earthquakes. Your deliverables will be a PowerPoint presentation you will create summarizing your findings and an excel document to show your work.
Concepts Being Studied
Correlation and regression Creating scatterplots Constructing and interpreting a Hypothesis Test for Correlation using r as the test statistic You are given a spreadsheet that contains the following information: Magnitude measured on the Richter scale Depth in km Using the spreadsheet, you will answer the problems below in a PowerPoint presentation.
What to Submit
The PowerPoint presentation should answer and explain the following questions based on the spreadsheet provided above. Slide 1: Title slide Slide 2: Introduce your scenario and data set including the variables provided. Slide 3: Construct a scatterplot of the two variables provided in the spreadsheet. Include a description of what you see in the scatterplot. Slide 4: Find the value of the linear correlation coefficient r and the critical value of r using α = 0.05. Include an explanation on how you found those values. Slide 5: Determine whether there is sufficient evidence to support the claim of a linear correlation between the magnitudes and the depths from the earthquakes. Explain. Slide 6: Find the regression equation. Let the predictor (x) variable be the magnitude. Identify the slope and the y-intercept within your regression equation. Slide 7: Is the equation a good model? Explain. What would be the best predicted depth of an earthquake with a magnitude of 2.0? Include the correct units. Slide 8: Conclude by recapping your ideas by summarizing the information presented in context of the scenario. Along with your PowerPoint presentation, you should include your Excel document which shows all calculations.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more