The writer is very fast, professional and responded to the review request fast also. Thank you.
Instructions: Please provide a brief verbal explanation of each step in your solution. State
where the formulas are coming from, and why they are applicable here. Use symbols and
formulae effectively defining their meaning and making it clear whether they are vectors or
scalars. Write legibly, and draw large and clearly labeled sketches.
Here is a problem that will let you both practice Gauss’s Law and help you see how more
complicated systems can be built from the simpler ones. More complicated systems cannot
be solved by themselves with Gauss’s Law, but the simpler ones can, and then you can use
the principle of superposition to put everything together.
(a) An infinite plate with thickness 2h is parallel to the x − z plane so that it’s mid-point
(the point halfway through the plate) is at y = 0. (That way all the points on one
surface have y = +h and on the other y = −h.) The plate is uniformly charged with
volume charge density +ρ. Sketch the electric field lines. Using a cylinder of height
2y and base area A as a Gaussian surface, find the magnitude of the electric field for
any value of y . Graph Ey (y ) (the projection of E onto the y axis). Finally, express
ˆ
E (x, y, z ) using the unit vectors of Cartesian coordinate system: ˆ, ˆ, and k .
ij
(b) An infinite cylinder with outer radius h is coaxial with the z axis. It is uniformly
charged with the volume charge density +ρ. Using a cylinder of radius r and length
(also coaxial with the z axis) as the Gaussian surface, derive E (r). Graph E (r).
Express E (r) using the unit vector r of the vector r, drawn from the z axis to the
ˆ
point where we want the electric field.
ˆ
Next, express E (x, y, z ) as a function of ˆ, ˆ, and k .
ij
[Note: If we label the azimuthal angle of the cylindrical coordinate system with φ, then
r = xˆ + yˆ = r cos φˆ + r sin φˆ and thus r = cos φˆ + sin φˆ.]
(c) Through an infinite charged plate described in part (a), an infinitely long cylindrical
hole of radius h is drilled so that it is coaxial with the z axis. [Note the cylinder axis
of the hole is parallel to the plane. The system consists of a plate from part (a) with
the cylinder from part (b) taken away. ]
Using the principle of superposition, and relying on the answers from parts (a) and
(b), explain in words how we can get an electric field at an arbitrary point.
For the points along the y axis, graph Ey (y ).
Write a formula for E at an arbitrary point (x, y, z ).
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more